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We study the medium-time behavior of the survival probability in the frame of the
N-level Friedrichs model. The time evolution of an arbitrary unstable initial state is
determined. We show that the survival probability may oscillate significantly during the
so-called exponential era. This result explains qualitatively the experimental observa-
tions of the NaI decay. The Gamow states forN-level Friedrichs model are constructed.
The time evolution in terms of the complex spectral representation including the Gamow
states is discussed.

KEY WORDS: unstable system; non-exponential decay; resonances; Friedrichs
model.

1. INTRODUCTION

Recent developments in femtosecond laser optics (see for example paper
(Zewail, 2000) and the XXth Solvay Conference on Chemistry (Gaspard and
Burghardt, 1997)) opened new possibilities for the study of quantum transitions,
which are a very important subject of the quantum theory. In a series of works,
Zewail et al. (Conget al., 1996; Felker and Zewail, 1995; Lienau and Zewail,
1996; Potteret al., 1992) applied femtosecond transition-time spectroscopy for
the probing of chemical reactions. Following the work of Kinseyet al.(Imreet al.,
1984) they attempted in paper (Conget al., 1996) to track wave packet trajectories
in the dissociation of NaI.

The shapes of the ground state potential for NaI and of the quasi-bound
potential of the Na(2S1/2)+ I(2P3/2) system suggest a mechanism of the induced
dissociation process. The femtosecond laser pulse brings the NaI molecule to the
state of quasi-bound ions. The distance between the ions reaches the region where
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two potentials have similar values due to vibrations of a NaI excited state. Then
the transition from Na(2S1/2)+ I(2P3/2) quasi-bound state to NaI continuum state
occurs resulting in the dissociation of the molecule.

After an initial exciting laser pulse, the experiment shows oscillations of the
Na(2S1/2)+ I(2P3/2) population, which are explained in (Conget al., 1996) by wave
packet propagation. The direction of the wave packet propagation is correlated with
the oscillation (extension and contraction) of the NaI bond. The quantum dynamics
calculations are based on a time-dependent perturbation formalism.

This problem is an example of the interaction of the discrete spectrum with
the continuous spectrum, which was extensively discussed in the literature starting
from the work of Friedrichs (1948). Indeed, the energy states of Na(2S1/2)+
I(2P3/2) are the excited state embedded into the continuum states of the decay
products. Therefore, the time-dependence of the Na(2S1/2)+ I(2P3/2) population is
described by the survival probability of the excited state prepared by the laser pulse.

The original Friedrichs model (Friedrichs, 1948) contains two discrete en-
ergy levels a ground state and an excited state, coupled with the continuum, be-
ing bounded from below. The time-dependence of the survival probability of the
excited state has been studied both theoretically (Antoniouet al., 2001; Facchi
et al., 2001; Facchi and Pascazio, 1999; Khalfin, 1957, 1958; Kofmanet al., 1994;
Kofman and Kurizki, 2000; Namikiet al., 1997) and experimentally (Balzeret al.,
2000; Fischeret al., 2001; Itanoet al., 1990). It is exponential with a short nonex-
ponential initial era and a nonexponential long tail. As a result, Friedrichs models
are very appropriate for the discussion of the particle decay and for the description
of dressed unstable states (Antoniou and Prigogine, 1993; Ordonez,et al., 2001;
Petroskyet al., 1991). The analytical structure of the N-level Friedrichs model has
been analyzed (Bayley and Schieve, 1978; Davies, 1974; Duerinckx, 1983; Exner,
1985; Ruuskanen, 1970; Stey and Gibberd, 1972), and the oscillations of the sur-
vival probability were discussed, for example, in papers (Alicki and Lendi, 1987;
Hegerfeldt and Plenio, 1992, 1993; Kofman,et al., 1994; Lendi, 1980; Ruuskanen,
1970).

In the present paper we shall show that theN-level Friedrichs model can also
explain the oscillations of the survival probability of the excited state observed by
Zewail and coworkers (Conget al., 1996). Several excited levels are necessary in
order to construct a wave packet, which can exhibit localization and nonconven-
tional time evolution. In Section 2 we present the model and describe the exact
solution diagonalizing the Hamiltonian. Using the relation between eigenstates of
the unperturbed Hamiltonian and the total Hamiltonian, we describe in Section 3
the time evolution of the basis states. Specifying the form factor of the interac-
tion, we show in Section 4 the appearance of oscillations already for the two level
Friedrichs model. In Section 5 we demonstrate that the survival probability of
unstable states in theN-level Friedrichs model is in fact very close to the one
obtained in the experiment (Conget al., 1996).
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2. MODEL AND EXACT SOLUTION

The Hamiltonian of the Friedrichs model (Friedrichs, 1948) generalized to
N-level is

H = H0+ λV, (1)

where

H0 =
N∑

k=1

ωk|k〉〈k| +
∫ ∞

0
dω ω|ω〉〈ω|,

V =
N∑

k=1

∫ ∞
0

dω fk(ω) (|k〉〈ω| + |ω〉〈k|). (2)

Here|k〉 represent states of the discrete spectrum with the energyωk, ωk > 0. We
assume the simplest case thatωk 6= ω′k for k 6= k′. The vectors|ω〉 represent states
of the continuous spectrum with the energyω, fk(ω) are the form factors for the
transitions between the discrete and the continuous spectrum, andλ is the coupling
parameter. The vacuum energy is chosen to be zero. The states|k〉 and|ω〉 form a
complete orthonormal basis:

〈k|k′〉 = δkk′ , 〈ω|ω′〉 = δ(ω − ω′), 〈ω|k〉 = 0, k, k′ = 1 . . . N, (3)

N∑
k=1

|k〉〈k| +
∫ ∞

0
dω |ω〉〈ω| = I , (4)

whereδkk′ is the Kronecker symbol,δ(ω − ω′) is the Dirac delta function andI is
the unity operator. The HamiltonianH0 has the continuous spectrum on the interval
[0,∞) and the discrete spectrumω, . . . , ωk embedded in the continuous spectrum.

As the interactionλV is switched on, the eigenstates|k〉 become resonances
of H as in the case of the one-level Friedrichs model (Friedrichs, 1948). Let us
consider the eigenvalue problem for theN-level Friedrichs Hamiltonian (1)

H |9ω〉 = ω|9ω〉. (5)

We shall look for the solution of Eq. (5) in the form:

|9ω〉 =
∑

k

ψk(ω)|k〉 +
∫ ∞

0
dω′ψ(ω, ω′)|ω′〉, (6)

whereψk(ω) andψ(ω, ω′) are unknown functions. Inserting (6) into (5) and making
use of the orthogonality relations, we obtain for them a system of equations:

(ωk − ω)ψk(ω)+ λ ∫∞0 dω′ fk(ω′)ψ(ω, ω′) = 0,

(ω′ − ω)ψ(ω, ω′)+ λ
N∑

k=1
fk(ω′)ψk(ω) = 0.

(7)
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Eliminatingψ(ω, ω′) from this system, we arrive at the following equation for
ψk(ω):

N∑
k′=1

G−1
kk′ (ω)ψk′ (ω) = −Cλ fk(ω), (8)

whereC is an arbitrary constant.Gkk′ (ω) are the matrix elements of the partial
resolvent which is

G−1
kk′ (ω) = (ωk − ω)δkk′ − λ2

∫ ∞
0

dω′
fk(ω′) fk′ (ω′)
ω′ − ω . (9)

Under certain conditions (which will be specified below, see also (Exner, 1985)),
the functionGkk′ (z) is analytic everywhere in the first sheet of the Riemann man-
ifold except for the cut [0,∞). In this case, the HamiltonianH has no discrete
spectrum. The solution of Eq. (8) is given by

ψk(ω) = −Cλ
N∑

k′=1

Gkk′ (ω ± i 0) fk′ (ω). (10)

With this equation we findψ(ω, ω′) from the system (7):

ψ(ω, ω′) = C

[
δ(ω − ω′)+ λ

2∑N
k,k′=1 fk(ω′)Gkk′ (ω ± i 0) fk′ (ω)

ω − ω′ ± i 0

]
. (11)

The eigenvalue problem (5) has two sets of solutions

|9ω〉in
out
= |ω〉 + λ

N∑
k,l=1

fl (ω)Gkl(ω ± i 0)

{∫ ∞
0

dω′
λ fk(ω′)

ω′ − ω ∓ i 0
|ω′〉 − |k〉

}
,

(12)
which correspond to the “in” and “out” asymptotic conditions. The valueC = 1
corresponds to the orthonormalization condition

in
out
〈9ω|9ω′ 〉in

out
= δ(ω − ω′). (13)

We can also prove the completeness condition∫ ∞
0

dω|9ω〉in
out

in
out
〈9ω| =

N∑
k=1

ωk|k〉〈k| +
∫ ∞

0
dω|ω〉〈ω|. (14)

Hence the new states diagonalize the total Hamiltonian (1) as

H =
∫ ∞

0
dω ω|9ω〉in

out
in
out
〈9ω|. (15)

The proof of completeness is based on the matrix formula

A−1− B−1 = A−1(B− A)B−1,
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from which we can derive:

Gkk′ (ω + i 0)− Gkk′ (ω − i 0)

= 2π iλ2
N∑

l ,m=1

Gkl(ω + i 0) fl (ω) fm(ω)Gmk′ (ω − i 0). (16)

Using the asymptotics:

Gkk′ (ω) −→
ω→∞

δkk′

ω − ω′ + O

(
1

ω − ω′
)

, (17)

we prove other useful relations forG:

Gkk′ (ω ± i 0)= λ2
∫ ∞

0
dω′

N∑
l ,m=1

fl (ω
′) fm(ω′)

Gkl(ω′ + i 0)Gmk′ (ω′ − i 0)

ω′ − ω ∓ i 0
, (18)

and

λ2
∫ ∞

0
dω

N∑
l ,m=1

fl (ω) fm(ω)Gkl(ω + i 0)Gmk′(ω − i 0)= δkk′ . (19)

Because of the completeness of the new basis (14) the old basis vectors may be
expressed in terms of the new ones as

|k〉 =
∫ ∞

0
dω |9ω〉in in〈9ω|k〉, |ω〉 =

∫ ∞
0

dω′|9ω′ 〉in in〈9ω′ |ω〉 (20)

wherein〈9ω|k〉andin〈9ω′ |ω〉are the complex conjugates of〈k|9ω〉in and〈ω|9ω′ 〉in
respectively, which may be obtained from (12):

〈k|9ω〉in = −λ
N∑

l=1

fl (ω)Gkl(ω + i 0), (21)

〈ω|9ω′ 〉in = δ(ω − ω′)−
N∑

k,l=1

λ2 fk(ω) fl (ω′)Gk,l (ω′)
ω′ − ω − i 0

. (22)

Inserting complex conjugate of (21) into (20) we obtain the inverse relations in the
form:

|k〉 = −λ
N∑

l=1

∫ ∞
0

dω fl (ω)Gkl(ω − i 0)|9ω〉in (23)

|ω〉 = |9ω〉in −
N∑

k,l=1

λ fk(ω)
∫ ∞

0
dω′

λ fl (ω′)Gk,l (ω′)
ω′ − ω − i 0

|9ω′ 〉in. (24)

These inverse relations will be used for the calculation of the time evolution of|k〉
and|ω〉 in the next section.
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3. TIME EVOLUTION

Using the known evolution of the state|9ω〉in,

e−iHt |9ω〉in = e−iωt |9ω〉in,

we can find the evolution of the eigenstates ofH0:

|k〉t = −λ
N∑

l=1

∫ ∞
0

dω e−iωt fl (ω)Gkl(ω − i 0)|9ω〉in, (25)

|ω〉t = e−iωt |9ω〉in

−
N∑

k,l=1

λ fk(ω)
∫ ∞

0
dω′ e−iω′ λ fl (ω′)Gkl(ω′)

ω′ − ω − i 0
|9ω′ 〉in. (26)

Using (12), we obtain the representation

|k〉t =
N∑

l=1

Akl(t)|l 〉 + λ
N∑

l=1

∫ ∞
0

dω fl (ω)gkl(ω, t)|ω〉, (27)

|ω〉t = e−iωt |ω〉 − λ2
N∑

k,l=1

fl (ω)
∫ ∞

0
dω′ fk(ω)

gkl(ω′, t)− gkl(ω, t)

ω′ − ω

+
N∑

k,l=1

λ fk(ω)gkl(ω, t)|l 〉 (28)

in terms of the time-dependent matrix functionsAkl(t) andg(ω, t):

Akl(t) = λ2
N∑

l ,m,n=1

∫ ∞
0

dω e−iωt fm(ω) fn(ω)Gkm(ω + i 0)Gln(ω − i 0), (29)

gkl(ω, t) = −e−iωt Gkl(ω − i 0) (30)

+ λ2
N∑

m,n=1

∫ ∞
0

dω′ e−iω′t fm(ω′) fn(ω′)Gkm(ω′ − i 0)Gln(ω′ + i 0)

ω′ − ω + i 0
.

With the help of (16), we can rewrite (29) in the form

Akl(t) = 1

2π i

∫ ∞
0

dω e−iωt (Gkl(ω + i 0)− Gkl(ω − i 0))

= 1

2π i

∫
C

dω e−iωt Gkl(ω), (31)

where the contour C is shown in Fig. 1.
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With the help of (18), we rewrite (30) in the form

gkl(ω, t) = λ2
N∑

m,n=1

∫ ∞
0

dω′ fm(ω′) fn(ω′)Gkm(ω′ − i 0)

×Gln(ω′ + i 0)
e−iω′t − e−iωt

ω′ − ω + i 0
. (32)

The integrand in (32) does not have any singularity atω′ = ω, thereforei 0 in the
denominator becomes redundant. Then using (16) we obtain

gkl(ω, t) = 1

2π i

∫ ∞
0

dω′ (Gkl(ω
′ + i 0)− Gkl(ω

′ − i 0))
e−iω′t − e−iωt

ω′ − ω

= 1

2π i

∫
C

dω′Gkl(ω
′)

e−iω′t − e−iωt

ω′ − ω , (33)

where the contour C is shown in Fig. 1. For realω > 0 the term with the factor
e−iωt vanishes because it does not have any singularities outside the positive part
of the real line. Then we have

gkl(ω, t) = 1

2π i

∫
C

dω′Gkl(ω
′)

e−iω′t

ω′ − ω . (34)

Fig. 1. The contours of integration C and C1.
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One can easily check the following relation betweenAkl(t) andgkl(ω, t):

Akl(t) =
(

i
d

dt
− ω

)
gkl(ω, t). (35)

The time evolution of a state|8〉, which is a superposition of the eigenstates
of H0,

|8〉 =
N∑

k=1

ak|k〉, (36)

may be obtained with the help of (27)

|8(t)〉 =
N∑

k=1

ak|k〉t . (37)

The survival amplitudeA(t) of this state is

A(t) ≡ 〈8|8(t)〉 =
N∑

k,k′=1

aka∗k′ 〈k|k′〉t =
N∑

k,k′=1

aka∗k′Akk′ (t). (38)

Changing the contour of the integration C to C1 in Akk′ (t) as shown in Fig. 1, we
arrive at

Akk′ (t) = −
∑

j

r j
kk′e
−izj t + 1

2π i

∫
C1

dω e−iωt Gkk′ (ω), (39)

wherer j
kk′ is the residue ofGkk′ (ω) at the polezj :

r j
kk′ = resGkk′ (ω)|ω=zj . (40)

The first term in (39) corresponds to the contribution of the poleszj while the
second term is the background integral, which gives rise to so-called long tail
behavior (Facchi and Pascazio, 1999; Khalfin, 1957, 1958). It is known that the
integral term plays essential role for very long as well as very short times. In
the case of very short times we have the well-known Zeno and anti-Zeno regions
(Antoniouet al., 2001; Fischeret al., 2001; Kofman and Kurizki, 2000; Namiki
et al., 1997). If we consider the intermediate “exponential decay” era, the integral
term can be neglected because in this time scale, it is of the next order inλ2

compared with the first term.
The same result forAkk′ (t) (39) is obtained in Appendix in terms of Gamow

vectors (A14). In the intermediate “exponential” era, the main contribution to the
survival probability comes from the Gamow vectors as one may neglect the integral
term arising from the background.



P1: IAZ

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473608 November 18, 2003 12:3 Style file version May 30th, 2002

Oscillating Decay of an Unstable System 2411

4. TWO LEVEL MODEL

The rich structure of the model involving more than one level, will be first
illustrated with example with two excited levels by choosing the form factor in the
form similar to (Likhoded and Pronko, 1997)

fk(ω) = ω1/4

ω + ρ2
k

. (41)

For this form factor the matrix elementG−1
kk′ (ω) (9) is

G−1
kk′ (ω) = (ωk − ω)δkk′ +

πλ2

ρk + ρk′

1

(
√
ω + iρk) (

√
ω + iρk′ )

, (42)

where the first sheet of the complexω plane corresponds to the upper half of the
complex

√
ω plane. The square root is defined with the cut [0,+∞) such that√

ω > 0 at the upper rim of the cut. Forρk > 0 all singularities of the integral in
expression (9) are on the second sheet. In the case of two levels the matrix is

G−1(ω)

=


(ω1− ω)+ πλ2

2ρ1(
√
ω + iρ1)2

πλ2

(ρ1+ ρ2)(
√
ω + iρ1)(

√
ω + iρ2)

πλ2

(ρ1+ ρ2)(
√
ω + iρ1)(

√
ω + iρ2)

(ω2− ω)+ πλ2

2ρ2(
√
ω + iρ2)2

 (43)

The 2× 2 matrix representing the partial resolvent is

G(ω) = detG(ω)

×


(ω2− ω)+ πλ2

2ρ2(
√
ω + iρ2)2

− πλ2

(ρ1+ ρ2)(
√
ω + iρ1)(

√
ω + iρ2)

− πλ2

(ρ1+ ρ2)(
√
ω + iρ1)(

√
ω + iρ2)

(ω1− ω)+ πλ2

2ρ1(
√
ω + iρ1)2

 .
(44)

The determinant detG(ω) is

(detG(ω))−1

=
[
ω1− ω + πλ2

2ρ1(
√
ω + iρ1)2

] [
ω2− ω + πλ2

2ρ2(
√
ω + iρ2)2

]

−
(

πλ2

(ρ1+ ρ2)(
√
ω + iρ1)(

√
ω + iρ2)

)2

. (45)
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Here we can formulate necessary conditions for the analyticity of the functionG−1
kk′

on the first sheet:

1. ωiρ
2
i −

πλ2

2ρi
> 0, i = 1, 2

2.

(
ω1ρ

2
1 −

πλ2

2ρ1

)(
ω2ρ

2
2 −

πλ2

2ρ2

)
>

(
πλ2

ρ1+ ρ2

)2

.

(46)

These conditions are definitely satisfied in the weak coupling regime, because
ωi , ρi , andλ are independent parameters and for any fixedωi andρi , in the limit
λ→ 0 (46) becomes

1. ωiρ
2
i > 0, i = 1, 2

2. ωiω2ρ
2
i ρ

2
2 > 0,

which is obviously true asωi andρi are positive for anyi .
In order to find out the analytic structure ofG(ω), we analyze the poles of the

determinant:

(detG(ω))−1 =
[
(ω1+ x2) (x + ρ1)2− πλ

2

2ρ1

]

×
[
(ω2+ x2) (x + ρ2)2− πλ

2

2ρ2

]
−
(

πλ2

(ρ1+ ρ2)

)2

= 0, (47)

where we substitute
√
ω = ix. This is an algebraic equation of 8th degree with

real coefficients, so all the roots of this equation are either real or complex
conjugated pairs. All roots are on the second Riemann sheet, and there can be
k(k = 0 . . .4) pairs of complex conjugated roots and (8− 2k) real roots corre-
sponding to virtual states, i.e., negative energy states on the second sheet. For weak
couplingλ→ 0, two pairs of complex conjugated rootszj , z∗j can be evaluated
perturbatively as

zj = ω j + πλ
2

2ρ j

(
√
ω j − iρ j )2

(ω j + ρ2
j )

2
+ π2λ4

(
√
ω j + iρ j )2

×
(

1

(ω j − ωk) (ρ1+ ρ2)2 (
√
ω j + iρk)2

− 1

4ρ2
j
√
ω j (
√
ω j + iρ j )3

)
+O(λ6), j = 1, 2, k 6= j . (48)
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For the weak coupling regime the expressions for the real and imaginary parts of
zj are

ω̃ j = Rezj = ω j + πλ
2

2ρ j

ω j − ρ2
j

(ω j + ρ2
j )

2
+ O(λ4), j = 1, 2,

γ j = −Imzj =
πλ2√ω j

(ω j + ρ2
j )

2
+ O(λ4), j = 1, 2.

Neglecting the integral term in the representation (39), we can write:

A(t) ≈
∑

k,k′=1,2

aka∗k′
∑
j=1,2

e−γ j t e−i ω̃ j t r j
kk′

=
∑

k,k′=1,2

aka∗k′ e−i ω̃1+ω̃2
2 t
{(

r 1
kk′ e−γ1t + r 2

kk′ e−γ2t
)

cosνt

+ i
(
r 1

kk′ e−γ1t − r 2
kk′ e−γ2t

)
sinνt

}
=

2∑
j=1

|aj |2 e−izj t − λ2
2∑

j=1

(
iπ |a2

j |e−izj t

2ρ j (ρ j − i
√
ω j )3√ω j

+ 2π Re(a1a∗2) e−izj t

(ρ1+ ρ2) (ρ j − i
√
ω j )(ρl − i

√
ω j )(ω j − ωl )

)
+ O(λ4), l 6= j ,

(49)

where

ν = ω̃1− ω̃2

2
.

We would like to notice that both expressions (48) and (49) contain the term
1/(ωk − ωl ) and, therefore, cannot be directly used in the case of degenerate levels
in the initial HamiltonianH0. Also, the case of the continuous spectrum ofH0

requires a special consideration.
For the initial conditionsa1 = 1, a2 = 0, the survival amplitude (49) does not

have any oscillations. However, such oscillations appear in the next orderλ4 in
expression (49). The survival probabilityp(t) in the lowest order ofλ2 can be now
expressed as

p(t) = |A(t)|2 = ‖a1|2 e−γ1t + |a2|2 e−γ2t e−2i νt |2. (50)

We illustrate the possible behavior of the survival probability in Fig. 2. One can
see that depending on the initial conditions, the decay can either mimic the behav-
ior of the usual one level model (Antoniouet al., 2001) or display considerable
oscillations.
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Fig. 2. The survival probabilityp(t) for the two level model. The
parameters are chosen to beγ1 = γ2 = 10−3, ω1 = 1.0,ω2 =
1.06. The initial conditions area1 = 0.5, a2 = 0 (the solid line),
a1 = 0.5, a2 = 0.2 (the long-dashed line),a1 = 0.5, a2 = 0.5
(the short-dotted line). Time is in units of the decay timetd.

5. N-LEVEL MODEL

In the weak coupling regime we can also analyze theN-level model with an
arbitrary form factorfk(ω). Using the representation (9), we find

(detG(ω))−1 =
N∏

k=1

(ωk − ω)− λ2
N∑

k=1

Ikk(ω)
N∏

m6=k

(ωm − ω)+ O(λ4), (51)

where

Ikl(ω) =
∫ ∞

0
dω′

fk(ω′) fl (ω′)
ω′ − ω − i 0

.

The zeros of this expression give the position of resonances:

zk = ωk − λ2Ikk(ωk)+ O(λ4) = ω̃k − i γk, j = 1 . . . N. (52)

In the first nontrivial order of the perturbation theory with respect toλ2 we
have:

ω̃k = ωk, γk = πλ2 f 2
k (ωk).
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The partial resolventG can also be calculated:

Gkk′ (ω) = (ωk − ω − λ2Ikk′ω
)−1

δkk′ + O(λ2). (53)

From this representation we obtain the expression for the residues (40):

r j
kk′ = −δkk′δkj + O(λ2). (54)

We derive the survival amplitude (39) in the first nonvanishing term of the pertur-
bation expansion with respect toλ2:

A(t) =
N∑

k=1

|ak|2 e−iωkt e−πλ
2 f 2

k (ωk)t . (55)

In the case of theN-level model, the behavior of the survival probability is
much more complicated than in two level model. In order to illustrate this, we plot
in Fig. 3 few examples of the survival probability corresponding to different initial

Fig. 3. The survival probabilityp(t) for the three level model. The para-
meters are chosen to beγ1 = γ2 = γ3 = 10−3, ω1 = 1, the initial condi-
tions area1 = 0.3, a2 = 0.5, a2 = 0.3. The energies areω2 = 1.04,ω3 =
1.15 (the long-dashed line),ω2 = 1.06,ω3 = 1.15 (the solid line),ω2 =
1.064,ω3 = 1.15 (the short-dashed line). Time is in units of the decay
time td.
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conditions for the three level model with different parameters. In this case, the
behavior is not necessarily “self-similar” even for the very slow decay. One can see
that our curves reproduce fairly well the experimental results. Hence we can suggest
here an explanation of the results (Conget al., 1996) which does not refer to the
semiclassical description invoked in paper (Conget al., 1996). Namely, the initial
laser impulse creates in the systemNaI a wave packet which is a superposition
of (many) excited states. Then each excited state decays independently while the
common survival probability (55) exhibits a complicated behavior similar to one
of Fig. 3 and Figs. 3, 4 in paper (Conget al., 1996).

In fact, the interference of many decaying states can drastically change the
decay patterns. In this case, the decay is equally defined by both the parameters
of the system (energies, widths) and the distribution of the initial wave packetak.
Therefore, the decay profile may mimic different nonexponential functions. Such
a behavior is illustrated in Fig. 4, where we plot the decay of the (2N + 1)-level

Fig. 4. The survival probabilityp(t) for theN-level model. The parameters
are chosen to beγk = 10−3, ωk = ω0 + k1ω/N, k = −N . . . N, where
ω0 = 1,1ω = 0.1. The initial conditions areãk = exp(−(k/N)2), k =
−N . . . N. The results forN = 2 (the solid line),N = 3 (the short-dashed
line), andN = 5 (the long-dashed line) are presented. Time is in units of
the decay timetd.
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system:

γk = γ = const, ωk = ω0+ k

N
1ω, k = −N . . . N. (56)

The initial distributionak is chosen to be the Gaussian one:

ak = ãk∑
k ã2

k

, ãk = exp

(
−
(

k

N

)2
)

, k = −N . . . N. (57)

From Fig. 4 we can see that the initial decay is almost independent ofN. The
duration of the initial decay is much shorter than the decay timeτdec= 1/γ . The
number of repeated peaks decreases asN increases. Already for 10 levels, a rather
small number for molecular systems, the second peak is very far from the region of
the initial decay. While the values (56), (57) are chosen quite arbitararily and can
only be used for illustrative purposes, we would like to notice that the excitation
process in experiments similar to (Conget al., 1996) is usually well-defined and
well-reproduced. Hence the initial wave packet may also be well-correlated.

6. CONCLUSIONS

Dissociation processes like the dissociation of NaI, which is a kind of tun-
neling/decay process, may be described by the simple quantum mechanical model
of the interaction of theN-level discrete spectrum with the continuous spectrum.
Already the model with two levels displays decaying oscillations of the survival
probability in the “exponential” era, while one-level model exhibit the purely ex-
ponential decay. The amplitude of the oscillation is determined by the initial state,
which is a superposition of two excited levels. The model with three levels may
illustrate qualitatively the experimental curve of the NaI dissociation. In theN-
level system, the decay is equally defined by both the parameters of the system
and the distribution of the initial wave packet.

APPENDIX: TIME EVOLUTION IN TERMS OF GAMOW VECTORS

By analytic continuation to the second sheet, we obtain the extended distribu-
tionsGd

kl(ω ± i 0) and 1/[ω − zk]+ defined as functionals, which act on a suitable
test functionh(ω) as∫ ∞
0

dωh(ω)Gd
kl(ω ± i 0)≡

∫
0

h(ω)Gkl(ω ± i 0) (A1)

=
∫ ∞

0
dωh(ω)Gkl(ω ± i 0)+ 2π i

∑
j

∫
Czj

h(ω)Gkl(ω ± i 0),



P1: IAZ

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473608 November 18, 2003 12:3 Style file version May 30th, 2002

2418 Antoniou, Karpov, Pronko, and Yarevsky

=
∫ ∞

0
dω

h(ω)

[ω − zj ]+
≡
∫
0

h(ω)

ω − zj
=
∫ ∞

0
dω

h(ω)

ω − zj
+ 2π i

∫
Czj

h(ω)

ω − zj
(A2)

Using (A1) and (A2), we obtain from (12) the Gamow vectors (Antoniou and
Prigogine, 1993; Bohm and Gadella, 1989; Petroskyet al., 1991) in the form

∣∣φG
j

〉 = Nj

N∑
k,l=1

λ fl (zj )r
j

kl

[
|k〉 −

∫ ∞
0

dω
λ fk(ω)

[ω − zj ]+
|ω〉
]

, (A3)

〈
φ̃G

j

∣∣ = Nj

N∑
k,l=1

λ fl (zj )r
j

kl

[
〈k| −

∫ ∞
0

dω
λ fk(ω)

[ω − zj ]+
〈ω|
]

, (A4)

∣∣9G
ω

〉 = |ω〉 + λ N∑
k,l=1

fl (ω)Gd
kl(ω + i 0)

{∫ ∞
0

dω′
λ fk(ω′)

ω′ − ω − i 0
|ω′〉 − |k〉

}
,

(A5)〈
9̃G
ω

∣∣ = 〈ω|λ N∑
k,l=1

fl (ω)Gkl(ω − i 0)

{∫ ∞
0

dω′
λ fk(ω′)

ω′ − ω + i 0
〈ω′| − 〈k|

}
(A6)

whereGd
kl(ω + i 0) is a distribution with the kernelGkl(ω + i 0) and the contour

of the integration0. We recall thatr j
kl is the residue ofGkl(ω + i 0) at the polezj .

The normalization constantsNk are

N−2
j =

N∑
k,l ,m,n=1

λ2 fl (zj ) fn(zj )r
j

klr
j

mn

[
δkm+

∫ ∞
0

dω
λ2 fk(ω) fm(ω)

[ω − zj ]2+

]
. (A7)

The Gamow vectors (A3–A6) are left and right eigenfunctions of the extended
Hamiltonian, which can be written as

H+ =
∑

j

zj

∣∣φG
j

〉 〈
φ̃G

j

∣∣+ ∫ ∞
0

dω ω
∣∣9G

ω

〉 〈
9̃G
ω

∣∣. (A8)

The Gamow vectors from a biorthonormal set:〈
φ̃G

j

∣∣φG
j ′
〉 = δjj ′ ,

〈
9̃G
ω

∣∣9G
ω′
〉 = δ(ω − ω′), 〈

9̃G
ω

∣∣φG
j

〉 = 0, (A9)

which is complete. The completeness follows from the extension of (14):

I =
N∑

k=1

∣∣φG
k

〉 〈
φ̃G

k

∣∣+ ∫ ∞
0

dω
∣∣9G

ω

〉 〈
9̃G
ω

∣∣. (A10)
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The time evolution of the vector|k〉 in the new extended representation is

|k〉t =
∑

j

e−izj t
∣∣φG

j

〉 〈
φ̃G

j

∣∣k〉+ ∫ ∞
0

dω e−iωt
∣∣9G

ω

〉 〈
9̃G
ω

∣∣k〉. (A11)

Using (A3–A6), we express the transition amplitude

〈k|k′〉t =
∑

j

e−izj t N2
j

N∑
l ,l ′=1

λ2 fl (ω) fl ′ (ω)r j
klr

j
k′l ′

+
N∑

l ,l ′=1

∫ ∞
0

dω e−iωtλ2 fl (ω) fl ′ (ω)Gd
kl(ω + i 0)Gk′l ′ (ω − i 0). (A12)

The integral terms of (A12) can be rewritten in the form

1

2π i

∫ ∞
0

dω e−iωt
(
Gd

kk′ (ω + i 0)− Gkk′ (ω − i 0)
)
. (A13)

Taking into account thatGd
kk′ (ω + i 0) implies integration along the contour0,

which goes to the second Riemann sheet below all the singularities ofGkk′ (ω + i 0)
(see Fig. A1), we obtain the transition amplitude in the form

〈k|k〉t =
∑

j

e−izj t N2
j

N∑
k,l ,k′,l ′=1

λ2 fl (zj ) fl ′ (zj )r
j

klr
j

k′l ′ +
1

2π i

∫
C1

dω e−iωt Gkk′ ,

(A14)

Fig. A1. The contours of integration0 andCzj .
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which must coincide with the result obtained using Friedrichs solution (39). In
order to fulfill this requirement the following formula must hold:

N2
j

N∑
k,l ,k′,l ′=1

λ2 fl (zj )l
′
l (zj )r

j
klr

j
k′l ′ = −r j

kk′ . (A15)
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