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Oscillating Decay of an Unstable System
I. Antoniou, * E. Karpov,® G. Pronko,? and E. Yarevsky'3
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We study the medium-time behavior of the survival probability in the frame of the
N-level Friedrichs model. The time evolution of an arbitrary unstable initial state is
determined. We show that the survival probability may oscillate significantly during the
so-called exponential era. This result explains qualitatively the experimental observa-
tions of the Nal decay. The Gamow statesNbievel Friedrichs model are constructed.
The time evolution in terms of the complex spectral representation including the Gamow
states is discussed.

KEY WORDS: unstable system; non-exponential decay; resonances; Friedrichs
model.

1. INTRODUCTION

Recent developments in femtosecond laser optics (see for example paper
(Zewail, 2000) and the XXth Solvay Conference on Chemistry (Gaspard and
Burghardt, 1997)) opened new possibilities for the study of quantum transitions,
which are a very important subject of the quantum theory. In a series of works,
Zewail et al. (Conget al,, 1996; Felker and Zewail, 1995; Lienau and Zewalil,
1996; Potteret al, 1992) applied femtosecond transition-time spectroscopy for
the probing of chemical reactions. Following the work of Kinséwl. (Imreet al,

1984) they attempted in paper (Coettal., 1996) to track wave packet trajectories
in the dissociation of Nal.

The shapes of the ground state potential for Nal and of the quasi-bound
potential of the N&(S,/2) + I(*Ps/2) system suggest a mechanism of the induced
dissociation process. The femtosecond laser pulse brings the Nal molecule to the
state of quasi-bound ions. The distance between the ions reaches the region where
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two potentials have similar values due to vibrations of a Nal excited state. Then
the transition from N&S;2) + 1(°Ps/2) quasi-bound state to Nal continuum state
occurs resulting in the dissociation of the molecule.

After an initial exciting laser pulse, the experiment shows oscillations of the
Na@Sy,2) + 1(?Ps/2) population, which are explained in (Coetgl., 1996) by wave
packet propagation. The direction of the wave packet propagation is correlated with
the oscillation (extension and contraction) of the Nal bond. The quantum dynamics
calculations are based on a time-dependent perturbation formalism.

This problem is an example of the interaction of the discrete spectrum with
the continuous spectrum, which was extensively discussed in the literature starting
from the work of Friedrichs (1948). Indeed, the energy states of Haf +
I(2P3/2) are the excited state embedded into the continuum states of the decay
products. Therefore, the time-dependence of thé${a{) + 1(>Ps/2) population is
described by the survival probability of the excited state prepared by the laser pulse.

The original Friedrichs model (Friedrichs, 1948) contains two discrete en-
ergy levels a ground state and an excited state, coupled with the continuum, be-
ing bounded from below. The time-dependence of the survival probability of the
excited state has been studied both theoretically (Antoatoal,, 2001; Facchi
etal, 2001; Facchi and Pascazio, 1999; Khalfin, 1957, 1958; Kofetah, 1994,
Kofman and Kurizki, 2000; Namilet al., 1997) and experimentally (Balzetal,

2000; Fischeet al,, 2001; Itancet al,, 1990). It is exponential with a short nonex-
ponential initial era and a nonexponential long tail. As a result, Friedrichs models
are very appropriate for the discussion of the particle decay and for the description
of dressed unstable states (Antoniou and Prigogine, 1993; Ordeinalz,2001;
Petroskyet al,, 1991). The analytical structure of the N-level Friedrichs model has
been analyzed (Bayley and Schieve, 1978; Davies, 1974; Duerinckx, 1983; Exner,
1985; Ruuskanen, 1970; Stey and Gibberd, 1972), and the oscillations of the sur-
vival probability were discussed, for example, in papers (Alicki and Lendi, 1987;
Hegerfeldt and Plenio, 1992, 1993; Kofmanal,, 1994; Lendi, 1980; Ruuskanen,
1970).

In the present paper we shall show thatMwevel Friedrichs model can also
explain the oscillations of the survival probability of the excited state observed by
Zewail and coworkers (Congt al., 1996). Several excited levels are necessary in
order to construct a wave packet, which can exhibit localization and nonconven-
tional time evolution. In Section 2 we present the model and describe the exact
solution diagonalizing the Hamiltonian. Using the relation between eigenstates of
the unperturbed Hamiltonian and the total Hamiltonian, we describe in Section 3
the time evolution of the basis states. Specifying the form factor of the interac-
tion, we show in Section 4 the appearance of oscillations already for the two level
Friedrichs model. In Section 5 we demonstrate that the survival probability of
unstable states in thH-level Friedrichs model is in fact very close to the one
obtained in the experiment (Comrgal., 1996).
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2. MODEL AND EXACT SOLUTION

The Hamiltonian of the Friedrichs model (Friedrichs, 1948) generalized to
N-level is

H = Ho+ AV, (1)

where

N [ee)
Ho=2wk|k><k|+f0 do wlw)(wl,
k=1

N 00
v=>Y" /0 deo fi(@) (1K) (@] + @) (KI). @)
k=1

Here|k) represent states of the discrete spectrum with the ergrgyc > 0. We
assume the simplest case that# wy for k # k. The vectorgw) represent states
of the continuous spectrum with the enekgy fx(w) are the form factors for the
transitions between the discrete and the continuous spectrurhjstite coupling
parameter. The vacuum energy is chosen to be zero. The atesl|w) form a
complete orthonormal basis:

(KIK') = S, (o) =8(w—o), (0K =0, kkK=1...N, (3)

N 00
Z|k><k|+/ do |o) (o] = 1, @
k=1 0
wheredyy is the Kronecker symbob(w — «') is the Dirac delta function anddis
the unity operator. The Hamiltonidty has the continuous spectrum on the interval
[0, o0) and the discrete spectrum . . ., wx embedded in the continuous spectrum.
As the interactiorhV is switched on, the eigenstaté&s become resonances
of H as in the case of the one-level Friedrichs model (Friedrichs, 1948). Let us
consider the eigenvalue problem for tNelevel Friedrichs Hamiltonian (1)

HIV,) = o|V,). )
We shall look for the solution of Eq. (5) in the form:
W) =3 v@lk) + /O Ao (@, o)), (6)
K

wherey(w) andy (w, o) are unknown functions. Inserting (6) into (5) and making
use of the orthogonality relations, we obtain for them a system of equations:

(@k — @)y(@) + 1 f5- do fi(@) ¢ (@, o) = 0,

N ()
(@ — )¢ (w, @) + 2 k;l fu(@)Ylw) =0
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Eliminating ¥ (w, «") from this system, we arrive at the following equation for

Yk(w):
N
Y G(@)¥e(w) = —Cafi(w), (8)
k'=1

whereC is an arbitrary constanG,,(w) are the matrix elements of the partial
resolvent which is

G;Kl(a)) = (wk — )8 — A2 /000 do’ 9)

Under certain conditions (which will be specified below, see also (Exner, 1985)),
the functionG, (2) is analytic everywhere in the first sheet of the Riemann man-
ifold except for the cut [0p0). In this case, the HamiltoniaH has no discrete
spectrum. The solution of Eq. (8) is given by

f(@) fe(@)

o —w

N
(@) = —Ch ) Gl £i0) (). (10)
k'=1

With this equation we find/ (w, »’) from the system (7):

2 Ykt (@)l £10) fkf(w)} W
ow—o £i0

Y(w, w)=C |:8(a) — o)+

The eigenvalue problem (5) has two sets of solutions

Wl = ) 7Y fl(w)ekl(wim){/ o' o)~ o
k,I=
12)

which correspond to the “in” and “out” asymptotic conditions. The value 1
corresponds to the orthonormalization condition

(\IJ (W) n = = §(w — o). (13)
We can also prove the completeness condition
) N 00
/ doo[Wo)in in (Wol = Y wx[K) (k| + / dolw)(w]. (14)
0 out out =1 0
Hence the new states diagonalize the total Hamiltonian (1) as
oo
H :/ dw CU|\I/ in in <IIJ | (15)
0 out out

The proof of completeness is based on the matrix formula
Al-Bl=AYB-ABY
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from which we can derive:
GkK(w + |0) — GkK(a) — |0)

N
= 27132} Gu(w +i0)fi (@) fm(@) G (@ — 10). (16)

I,m=1

Using the asymptotics:

(@) — S +o< ! ) 17)

w—w

we prove other useful relations f@:

Gu(w' +i0)Gmk(ew —i0)

00 N
Ge(w £i0) = 22 /0 de’ I;I fi (@) fm(@) o —oTi0 (18)
and
00 N
A2 / do Y fi(®) fm(@)Gi(@ +10)Gmi (@ — 10) = S (19)
0

I, m=1

Because of the completeness of the new basis (14) the old basis vectors may be
expressed in terms of the new ones as

_ /O o [Wo)in m(Wo k), ) = /0 oW )in in(Worl)  (20)

wheren (¥, |k) andiy (¥, |w) are the complex conjugates@f ¥, )in and{w|¥,, )in
respectively, which may be obtained from (12):

(KW,)in = —A Z fi(@)Gu(w +10), (21)

XN: A2 fi(w) fi (w)le(w)

(@l W, )in = 80 — ) - e (22)
k

J=1

Inserting complex conjugate of (21) into (20) we obtain the inverse relations in the
form:

N o0
k) = —x; /0 do fi(0)Gu(w — i0)|W,)in (23)

N /
|Cl)> — |\ij>in _ Z )\.fk(a))/ dw /)\,f|((,() )Gk|((1)) w/>|n~ (24)

K=l o —w—i0

These inverse relations will be used for the calculation of the time evolutige) of
and|w) in the next section.



2408 Antoniou, Karpov, Pronko, and Yarevsky

3. TIME EVOLUTION

Using the known evolution of the stat®,, )in,
e MW, )in = &7 W, )in,

we can find the evolution of the eigenstatesHaf

N )
- f dw € () Gia(@ — 10)[ Wo)in, (25)
1=1 70
) = €7 W, )in
N , —Iw’)\‘fl (a)/)Gk|(a)/)
- szlek(w)/ do O gy (20)
Using (12), we obtain the representation
N N )
9= 3 A +3.3 /0 do fi(@)g(@, Do), (27)
|a)) _ —Ia)t|a) )\2 Z fl (a)) /OO do’ fk(a)) gk|(w/1 t)/ - gk|(wv t)
0 w —w
N
+ > Mi@)da(@, DI (28)
k=1

in terms of the time-dependent matrix functiofg(t) andg(w, t):

N oo
Aat) =2 > / dow €7 f(®) fa(@) Gkm(@ + 10)Gin(w — 10), (29)

I,mn=170
gu(, t) = —e’i“’tGH(a) —i0) (30)
/ do’ e io't fn(@") fn(@') Gim(@w" — 10)Gin (e’ +I0)
m,n= 1 o —w+i0

With the help of (16), we can rewrite (29) in the form

) = 5 / de €7 (Gy( +10) — Gyl — 10))

= ﬁ/éda) e‘i“’tGm(a)), (31)

where the contour C is shown in Fig. 1.
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With the help of (18), we rewrite (30) in the form

N [
%@o=ﬂ§:/ddmmmwmmdqm
m,n=170
—io't _ e—ia)t

XGin(o +10)—

W —wti0 (32)

The integrand in (32) does not have any singularity’at w, therefora 0 in the
denominator becomes redundant. Then using (16) we obtain

1 [ ] ) ) —io't _ efiwt
O(w, t) = g / do’ (Gy(ew" +10) — Gy(w' —i0)) -
i Jo o —w
1 —io't _ a—iot
= / dw/le(w')uv (33)
27l Je W —w

where the contour C is shown in Fig. 1. For reat 0 the term with the factor
e 't vanishes because it does not have any singularities outside the positive part
of the real line. Then we have

—iw't

(0,0 = 5. [ do'Gu(e) (34)

o —w

Fig. 1. The contours of integratonCangC |-~
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One can easily check the following relation betwegj(t) andgy(w, t):

Aa(t) = (& - w) Ga(, 1) (35)

The time evolution of a statgd), which is a superposition of the eigenstates
of Ho,

N
|©) =) adk), (36)
k=1
may be obtained with the help of (27)
N
[2(t) = Y alk. (37)
k=1
The survival amplitudé\(t) of this state is
N N
Al = (@[D() = D adp (ki) = ) ad Alt). (38)
k,k'=1 k,k'=1

Changing the contour of the integration C tg i@ A (t) as shown in Fig. 1, we
arrive at

. ) 1 )
Ag(t) == rje a4 o fc do €' Gy (), (39)
j 1

WhererliK is the residue 06y (w) at the polez;:
(e = 1eSGu(®) oz, (40)

The first term in (39) corresponds to the contribution of the palewhile the
second term is the background integral, which gives rise to so-called long tail
behavior (Facchi and Pascazio, 1999; Khalfin, 1957, 1958). It is known that the
integral term plays essential role for very long as well as very short times. In
the case of very short times we have the well-known Zeno and anti-Zeno regions
(Antoniouet al, 2001; Fischeet al,, 2001; Kofman and Kurizki, 2000; Namiki
etal, 1997). If we consider the intermediate “exponential decay” era, the integral
term can be neglected because in this time scale, it is of the next ordér in
compared with the first term.

The same result foA (t) (39) is obtained in Appendix in terms of Gamow
vectors (Al4). In the intermediate “exponential” era, the main contribution to the
survival probability comes from the Gamow vectors as one may neglect the integral
term arising from the background.
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4. TWO LEVEL MODEL

The rich structure of the model involving more than one level, will be first
illustrated with example with two excited levels by choosing the form factor in the
form similar to (Likhoded and Pronko, 1997)

1/4
fu(w) = . 41
k( ) w"‘ﬁ& ( )
For this form factor the matrix eleme@ () (9) is
A2 1
Gil(@) = (ox — @) + — (42)

px+ pre (Vo +ip) (Vo +ipe)’

where the first sheet of the complexplane corresponds to the upper half of the
complex./w plane. The square root is defined with the cut{@0) such that
/o > 0 at the upper rim of the cut. Fax > 0 all singularities of the integral in
expression (9) are on the second sheet. In the case of two levels the matrix is

G ()

(01— o) + A2 A2
NS 2o tip)? (ot Vo i) Wo tie) |
B A2 (0 — )+ A2
(o1 + P) (Vo +ip) (Vo +ip2) 202(J/0 +1p2)?
The 2x 2 matrix representing the partial resolvent is
G(w) = detG(w)
(a) — w) + n—)\z — 2
A 20V +ip2)? (01 + P2) (Vo +ipD)(Vo +ip2)
— 7'[)»2 (w — w) + n—AZ
(01 + p2) (V@ +ipD) (Vo +ip2) - 201(Vo +ip1)?
(44)

The determinant de&(w) is
(detG(w)) ™t

[ N A2 ] [ N A2 ]
=lvmm—ovo+—F——mr——s| |-t ——m———
' 201(Wo +ip2 ] [ 202(@ + ip2)?

A2 2
- ((,01 + p2)(Vo +ip) (Vo + iPz)) ' (49)
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Here we can formulate necessary conditions for the analyticity of the fur@{j@n
on the first sheet:

2

A .
1.wip,—’;—>o i=1,2
|

A2 A2 A2 2
2 (e 2__>(w z__)>< )
<lpl 201 2P2 202 p1+ P2

These conditions are definitely satisfied in the weak coupling regime, because
wi, pi, andi are independent parameters and for any fixgeindp;, in the limit
A — 0 (46) becomes

(46)

1L wp?>0, i=1,2
2. wjwzp?p; > 0,

which is obviously true a&; andp; are positive for any.
In order to find out the analytic structure 8{w), we analyze the poles of the
determinant:

2
(detG(w))* = [(wl X)) (X + 1)’ — ﬂ]

2m
[(wz ) (X + o) — ﬂ} - (”—*2)2 0, (47)
2p, (o1 + p2) ’

where we substitute/w = ix. This is an algebraic equation of 8th degree with

real coefficients, so all the roots of this equation are either real or complex
conjugated pairs. All roots are on the second Riemann sheet, and there can be
k(k =0...4) pairs of complex conjugated roots and—«{&k) real roots corre-
sponding to virtual states, i.e., negative energy states on the second sheet. For weak
couplingx — 0, two pairs of complex conjugated roats zj can be evaluated
perturbatively as

)\,2( D) |p JTZ)\.4
2] (wl +07?  (Joj+ipj)

1 1
) ((wj — i) (1 + p2)? (J@; +ipK)2 4pj2Jw_j(JaTj+ipj)3>
+0(%, j=1,2, k#]j. (48)
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For the weak coupling regime the expressions for the real and imaginary parts of
z; are

A2 wj —,0 .
N':RGZ': 7] O)\,4, =1,2,
o) j =)+ 2,oJ( J+,012)2+ A",
A2 /@ .
Yi =—|ij—( 2)2-I-0(?»4) I=12
wj +

Neglecting the integral term in the representation (39), we can write:

A(t)% Z akak Z e Vit @ Ith l

k=12 =
Z aa), e %‘{(rkﬁ( e +r3, e cosut
k=12
+i(rg e —rg e sinwt}
2

=) laje AZZ (

i |af|eat

20i(pj —1@7)°/@;

27 Refyay) et

(pl+pz) (pj — i Joi)(p —i o)) (wj — o)

) +00Y, 1#],

(49)

where
w1 — 2
2
We would like to notice that both expressions (48) and (49) contain the term
1/(wx — @) and, therefore, cannot be directly used in the case of degenerate levels
in the initial HamiltonianHp. Also, the case of the continuous spectrumHaf
requires a special consideration.
For the initial conditiong; = 1, a, = 0, the survival amplitude (49) does not

have any oscillations. However, such oscillations appear in the next btder

expression (49). The survival probabilipft) in the lowest order of2 can be now
expressed as

V=

p(t) = A1 = laal? e 7 + [ap|? e 7 e 22, (50)

We illustrate the possible behavior of the survival probability in Fig. 2. One can
see that depending on the initial conditions, the decay can either mimic the behav-
ior of the usual one level model (Antoniai al., 2001) or display considerable
oscillations.
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p()

Fig. 2. The survival probabilityp(t) for the two level model. The
parameters are chosen to pe=y, = 1073, w1 = 1.0, w»

1.06. The initial conditions are; = 0.5, a, = 0 (the solid line),
=0.5,a, = 0.2 (the long-dashed line)ay = 0.5,a, = 0.5
(the short-dotted line). Time is in units of the decay tigne

5. N-LEVEL MODEL

In the weak coupling regime we can also analyzeNhkevel model with an
arbitrary form factorfy(w). Using the representation (9), we find

(detG(w)) ! H(wk—w) Azzlkk(w)ﬂ(wm ®)+ 001,  (51)

mz#£k
where

f(@) fi (o’

(@) = / dor K0
o —w—i0

The zeros of this expression give the position of resonances:

Zkzwk_)hzlkk(a)k)+O()\,4)=5)k_iyk, j=1...N. (52)

In the first nontrivial order of the perturbation theory with respectiave
have:

Dk = wy, Yk = TA? sz(a)k).
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The partial resolven® can also be calculated:

G (@) = (0k — © — 221w) " S + O (53)
From this representation we obtain the expression for the residues (40):
rl, = —8wdy + 0(2). (54)

We derive the survival amplitude (39) in the first nonvanishing term of the pertur-
bation expansion with respect 18:

N
AW = fa? et e . (55)
k=1

In the case of thé\-level model, the behavior of the survival probability is
much more complicated than in two level model. In order to illustrate this, we plot
in Fig. 3 few examples of the survival probability corresponding to different initial

1.0 —

p®®)
!

00 LA L L
0.00 0.05 0.10 0.15 0.20
tvtd

Fig. 3. The survival probabilityp(t) for the three level model. The para-
meters are chosen to g = y» = y3 = 1073, w; = 1, the initial condi-
tions area; = 0.3,a, = 0.5,a2 = 0.3. The energies ar@; = 1.04,w3 =
1.15 (the long-dashed liney; = 1.06,w3 = 1.15 (the solid line)w, =
1.064,w3 = 1.15 (the short-dashed line). Time is in units of the decay
timety.
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conditions for the three level model with different parameters. In this case, the
behavior is not necessarily “self-similar” even for the very slow decay. One can see
that our curves reproduce fairly well the experimental results. Hence we can suggest
here an explanation of the results (Cateal, 1996) which does not refer to the
semiclassical description invoked in paper (Cengl., 1996). Namely, the initial

laser impulse creates in the systd&al a wave packet which is a superposition

of (many) excited states. Then each excited state decays independently while the
common survival probability (55) exhibits a complicated behavior similar to one
of Fig. 3 and Figs. 3, 4 in paper (Coegjal., 1996).

In fact, the interference of many decaying states can drastically change the
decay patterns. In this case, the decay is equally defined by both the parameters
of the system (energies, widths) and the distribution of the initial wave pagket
Therefore, the decay profile may mimic different nonexponential functions. Such
a behavior is illustrated in Fig. 4, where we plot the decay of the {21)-level

1.0 —

0.8 —

PV
!

0.0 '
0.0

0.2 0.3
t/td

Fig. 4. The survival probabilityp(t) for the N-level model. The parameters
are chosen to bgx = 1073, wx = wp + kAw/N, k = —N ... N, where

wo =1, Aw = 0.1. The initial conditions arefy = exp(—(k/N)?), k =

—N ... N. The results foN = 2 (the solid line) N = 3 (the short-dashed
line), andN = 5 (the long-dashed line) are presented. Time is in units of
the decay timey.
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system:

k
Yk = Y = const, wk=w0~|—NAa), k=—-N...N. (56)

The initial distributionay is chosen to be the Gaussian one:

x 3 k 2
ak:%, akzexp<—<ﬁ>>, k=-N...N. (57

From Fig. 4 we can see that the initial decay is almost independeNnt dthe
duration of the initial decay is much shorter than the decay tigge= 1/y. The
number of repeated peaks decreasds axreases. Already for 10 levels, a rather
small number for molecular systems, the second peak is very far from the region of
the initial decay. While the values (56), (57) are chosen quite arbitararily and can
only be used for illustrative purposes, we would like to notice that the excitation
process in experiments similar to (Coabal., 1996) is usually well-defined and
well-reproduced. Hence the initial wave packet may also be well-correlated.

6. CONCLUSIONS

Dissociation processes like the dissociation of Nal, which is a kind of tun-
neling/decay process, may be described by the simple quantum mechanical model
of the interaction of thé\-level discrete spectrum with the continuous spectrum.
Already the model with two levels displays decaying oscillations of the survival
probability in the “exponential” era, while one-level model exhibit the purely ex-
ponential decay. The amplitude of the oscillation is determined by the initial state,
which is a superposition of two excited levels. The model with three levels may
illustrate qualitatively the experimental curve of the Nal dissociation. InNhe
level system, the decay is equally defined by both the parameters of the system
and the distribution of the initial wave packet.

APPENDIX: TIME EVOLUTION IN TERMS OF GAMOW VECTORS

By analytic continuation to the second sheet, we obtain the extended distribu-
tions Gﬁl(a) +i0) and ¥[w — z]. defined as functionals, which act on a suitable
test functiorh(w) as

f ” doh(w)GY(w £i0) = f h(w)Gk(w £10) (A1)
0 r

:/Oodwh(w)Gm(wj:iO)—l—Zni Z/ h(e)G(e % i0),
0 j Czj
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Y h(w) _ hw) [ h(w) . h(w)
_/o da)[w—Zj]+_/;‘w—Zj —/0 dw—a)—zj +27r|/Zj o—2 (A2)

Using (A1) and (A2), we obtain from (12) the Gamow vectors (Antoniou and
Prigogine, 1993; Bohm and Gadella, 1989; Petrastkyl, 1991) in the form

NS M)
oF1 = 3 e[l = [ dog 2 | *3
N
<SGl _ NI N\ Afk(w)
<¢j | = N; le:l)‘ﬁ(Zl)rlil[ / do [w—2 1]+( |] (A4

W) = +AZf|(w)G.(w+|0){f d/Mm}/)_m},

A w—1i0
(AS)

) N | i),
(\Dg|=(w|kk;lfl(w)Gk|(w—|O){/ aw MO, |—<k|} (A6)

whereGﬂl(w +i0) is a distribution with the kerngby(w + 10) and the contour

of the integratior”. We recall thatkjI is the residue 064(w + 10) at the polez;.
The normalization constantd, are

N © N
L N 12 H(@) ()
N; _k’I’%;:l)\ f,(z])fn(zj)rklr%n[skar/O do =2 } (A7)

The Gamow vectors (A3—A6) are left and right eigenfunctions of the extended
Hamiltonian, which can be written as

o0
= Y alof) 351+ [ doolus) (@] (ne)
i
The Gamow vectors from a biorthonormal set:

@%[6) =8, (BS|WS)=b(w—o),  (BS|pf)=0,  (A9)

which is complete. The completeness follows from the extension of (14):

N
=" |6¢) (#¢] +/ do|w8) (¥ (A10)

k=1
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The time evolution of the vectdk) in the new extended representation is
Ky = Ze-'z o) (65 |K) / do e[ W) (UE|K). (A11)
Using (A3—A6), we express the transition amplitude

(KIK'); = Ze"“N2 Z 22 fi () fir(@)ririy

I,I'=
/ dow €7“'A2 fi (w) fi (©) G (@ + 10)Gyi (@ — i10). (A12)
I I'=
The integral terms of (A12) can be rewritten in the form
o / dw 7! (G (@ +i10) — Gy (w — 0)). (A13)
Taking into account thaG¢ w (@ +10) implies integration along the contod,

which goes to the second Riemann sheet below all the singulariti&g &b + i 0)
(see Fig. Al), we obtain the transition amplitude in the form

N
. . 1 i
(Klkye =Y e ™@INZ - x2f|(zj)f.,(zj)rk'|r;/,,+T dw €' Gy,
i Kl k=1 Tl Je, A1)
r

——--—r -

0
[ ) - [ 2 -
z, ZJ

0 c, C,j dCiN
ORIOON

Fig. AL. The contours of integratioli andCy; .
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which must coincide with the result obtained using Friedrichs solution (39). In
order to fulfill this requirement the following formula must hold:

N

NZ YT 2@ =~k (A15)
k,1,k,1’=1
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